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Abstract. The frequency of occurrence of identical bands in superdeformed and normal-deformed nuclei is
studied by carrying out a statistical analysis of a large number of rotational bands, which are generated
with the reflection asymmetric shell model. The frequency of occurrence and the behaviors of identical
bands revealed in the statistical analysis of the experimental bands were generally reproduced by the
present theoretical simulation. This would indicate that the nuclear mean-field approximation plus the
beyond mean-field one, like angular-momentum and parity projections, can explain the phenomena of
identical bands even though there is no available theory that can reach the accuracy of identity between
the specific identical bands. Furthermore, the octupole effect on the identical bands is discussed. The
present theoretical simulation shows that more correlations may lead to more identical bands.

PACS. 21.60.Cs Shell model – 21.10.-k Properties of nuclei; nuclear energy levels – 27.70.+q 150 ≤ A ≤
189 – 27.80.+w 190 ≤ A ≤ 219

1 Introduction

The fascinating phenomenon of identical bands (IBs) was
first discovered in 1990 [1]. This came as a complete
surprise and initialized many new experimental studies.
Shortly afterwards, several other superdeformed (SD) IBs
in the Hg region [2,3] were found, and then this phe-
nomenon has also been seen in normal-deformed (ND) nu-
clei [4]. Since then, a number of IBs were observed at both
low and high spins, and they span different shapes in sev-
eral mass regions. Following these experimental findings,
many efforts have been made to understand the nature
and origin of this phenomenon [5]. In ref. [6] the frequency
of occurrence of the IBs in the experiment was investi-
gated, and it was pointed out that IBs are much more fre-
quently occurring in SD than in ND nuclei and the main
reason for this striking difference was attributed to the
significant differences in the pairing properties between
SD and ND nuclei. In ref. [7] the occurrence of IBs was
studied based on the Cranked Nilsson-Strutinsky model,
despite the conclusion is in line with that of the exper-
imental statistics [6], the disadvantage of this model is
clear, namely the angular momentum is not a good quan-
tum number, and the calculations of this model cannot
be directly compared with the measured energy levels of
rotational bands.
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Recently, the reflection asymmetric shell model
(RASM) has been formulated [8]. This makes it possible
to simulate theoretically the frequency occurrence of IBs
in heavy and SD nuclei at the microscopic level of the shell
model. Within the RASM, the calculated rotational bands
have good angular momentum and good parity just like
experimental rotational bands except the fact that parity
and spins have not been assigned for the majority of ex-
perimental SD bands. The RASM follows the basic idea of
the standard shell model and the octupole coupling force
is included in the Hamiltonian. In SD nuclei, the octupole
correlations were found in experiment as a universal phe-
nomenon in the A = 190 and 150 regions, see, for example,
ref. [9] and ref. [10]. Therefore, for a more realistic theo-
retical simulation for SD rotational bands in the A = 190
region, the octupole correlation should be considered. The
RASM is the only shell model that can be used to describe
the octupole SD nuclei. Thus, in our theoretical simulation
of IBs in SD nuclei and ND nuclei, the RASM is employed
to generate rotational bands.
To identify a pair of IBs, we have to choose a criterion

to define the IBs. The term “identical band” has been
used in several different ways. Someone applied it to a
pair of bands having the same dynamic moments of iner-
tia J (2), while others have restricted its use to a pair of
bands having the same actual γ-ray energies Eγ . Recently,
a convenient way, so-called energy factor method, has been
proposed to generalize the definition of IBs, which, to a
large degree, combines the two most common criterions,
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namely the requirements of near equality of the gamma-
ray energies and the dynamic moments of inertia of two
bands, into one [11,12]. This method is employed to define
the IBs in the present study. We will see later that the re-
sults and conclusions would not be changed if alternative
reasonable criterions were chosen.
The purpose of the present work is to make a the-

oretical simulation to study the statistical properties of
IBs. First, the rotational bands are generated by RASM
calculations for a considerable large number of SD and
ND nuclei. Second, statistical studies for IBs are car-
ried out by means of the energy factor method. In the
present work, we shall show that the large deformation
effect on the occurrence of IBs is already embedded in
the nuclear deformed mean field, like the one described
by the Nilsson potential. One of the goals of the present
study is to show that the frequency of occurrence and the
properties of IBs, such as the quantization of incremental
alignments revealed in the statistical analysis of the ex-
perimental rotational bands, can be generally reproduced
within the mean-field approximation including BCS pair-
ing, although not any available theoretical model based
on and beyond the mean-field approximation can describe
the matter with the accuracy of the identity between the
observed specific IBs, i.e. ∆Eγ ≈ 1 keV.
The paper is organized as follows. In sect. 2 and sect. 3,

the reflection asymmetric shell model and the energy fac-
tor method are briefly introduced. The results of simula-
tion and the incremental alignments of IBs are discussed
in sect. 4. A summary is given in sect. 5.

2 Brief description of the reflection

asymmetric shell model

In the reflection asymmetric shell model the simultaneous
angular-momentum and parity projections are carried out
with a chosen set of Nilsson + BCS states and then the
projected states are used to diagonalize the spherical shell
model Hamiltonian. With such projected basis the trun-
cation of the many-body basis can be achieved so that the
shell model calculation can be performed for heavy and
superdeformed nuclei. The validity of the RASM has been
demonstrated by a good description of the properties of
the octupole bands in Ra isotopes [8]. For an axial but
non-octupole shape, rotational bands can also be calcu-
lated with the RASM by setting the octupole deformation
parameter ε3 to be zero, namely the model is reduced to
the projected shell model (PSM) [13].
In the RASM, we consider a set of deformed BCS

multi-quasiparticle states {|Φκ〉}, where κ denotes the
quasiparticle configurations. Then the trial wave function
|Ψ〉 can be constructed as the superposition of oriented in
space and the “left-right” to “right-left” reflected intrinsic
wave functions,

|Ψ〉 =
∑

IMKκp

F Ip
MKP

pP I
MKκ |Φκ〉 , (1)

where P̂MKκ(P
p) is the angular-momentum (parity) pro-

jection operator. The {P pP I
MK |Φκ〉 } is the set of simulta-

neously angular-momentum– and parity–projected multi-
quasiparticle states, which forms the shell model space,

and the coefficients F Ip
MK are determined by diagonalizing

the shell model Hamiltonian, namely solving the following
eigenvalue equation:

∑

Kκ

{〈Φκ′ |HP pPK′K |Φκ〉

−EIp 〈Φκ′ |P pPK′K |Φκ〉
}

F Ip
MKκ = 0, (2)

with the normalization condition
∑

K′κ′Kκ

F Ip∗
MKκ 〈Φκ′ |P pPK′K |Φκ〉F

Ip
MKκ = 1. (3)

The Hamiltonian is written as

Ĥ = Ĥ0 −
1

2

4
∑

λ=2

χλ

λ
∑

µ=−λ

Q̂+
λµQ̂λµ

−GM P̂
+
00P̂00 −GQ

2
∑

µ=−2

P̂+
2µP̂2µ , (4)

where Ĥ0 is the spherical single-particle shell model
Hamiltonian, the second term includes the quadrupole
(λ = 2), octupole (λ = 3) and hexadecapole (λ = 4) inter-
actions, which lead to the quadrupole, octupole and hex-
adecapole deformations, respectively, the third and fourth
terms represent the monopole and quadrupole pairing in-
teractions, respectively. The coupling constants, χλ, can
be determined consistently with the deformations [8]. The
monopole pairing strength constant GM may be calcu-
lated by

GM =

[

g1 ∓ g2

(

N − Z

A

)]

×A−1, (5)

where the minus (plus) sign represents the neutron
(proton). In the present calculations g1 = 21.24 and
g2 = 13.86 were taken for the SD nuclei in the A = 190
mass region and the ND nuclei in rare-earth region.
The quadrupole pairing strength GQ is assumed to be
proportional to the monopole strength, GQ = fQGM . In
the present work we set fQ = 0.2 for SD nuclei and 0.16
for ND nuclei. The Nilsson parameters κ and µ are taken
from ref. [14]. The calculations include three major shells
N = 5, 6 and 7 (4, 5 and 6) for neutrons (protons) for
SD nuclei and N = 4, 5 and 6 (3, 4 and 5) for neutrons
(protons) for ND nuclei. The deformation parameters
were taken as ε2 = 0.41–0.45, ε3 = 0.062 for SD nuclei
in the A = 190 region, ε2 = 0.2 for ND nuclei in the
rare-earth region. These quadrupole deformation param-
eters have been adopted by systematically considering
the previous works, and also by fitting approximately
the yrast bands of the considered specific nuclei. The
octupole deformation ε3 = 0.062 has been used in RASM
calculation to reproduce the parity splitting between the
observed parity partner, for example, the negative-parity
SD band 3 and the yrast SD band 1 in 194Hg [9].
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3 The energy factor method for identical

bands

With the calculated rotational bands, we employ the so-
called energy factor method [11] to study the frequency
occurrence of IBs, and the method is briefly introduced
in the following. We select the regions of bands A and B,
each band consists of N+1 consecutive transition energies
Eγ(IA) and Eγ(IB), and then compare the two quantities
E′

γ(IA) and Eγ(IB). Here E
′

γ(IA) is defined, by introduc-
ing the energy factor χ, as

E′

γ(IA) = χEγ(IA) + (1− χ)Eγ(IA + 2), (6)

(IA = I0
A+2k, IB = I0

B +2k, k = 0, 1, 2, 3, ..., N − 1). (7)

where the χ is restricted to [0,1], I0
A and I

0
B are the band

head spin for the bands A and B, respectively. The tran-
sition energy at the band head in the band B satisfies
the relation Eγ(I

0
A) ≤ Eγ(I

0
B) ≤ Eγ(I

0
A + 2). In fact, the

factor χ describes the relationship of the transition ener-
gies of the bands A and B, and it can be determined by
minimizing the quantity s,

s =
N−1
∑

k=0

[E′

γ(IA)− Eγ(IB)]
2, (8)

and the result is

χ =

∑

k

[Eγ(IA + 2)− Eγ(IA)][Eγ(IA + 2)− Eγ(IB)]

∑

k

[Eγ(IA + 2)− Eγ(IA)]2
.

(9)

For an appropriate N and δ, if
∣

∣E′

γ(IA)− Eγ(IB)
∣

∣ ≤ δ is
fulfilled for all k’s, the two bands are then regarded as IBs.
The energy factor method is a useful tool in making

a systematic study of IBs. One of the advantages of this
method is that the average value of the incremental align-
ment of IBs can be directly calculated from the energy
factor. For a pair of IBs, the incremental alignment ∆i is
defined in ref. [15] as

∆i = 2
Eγ near − Eγ(IB)

Eγ(IA + 2)− Eγ(IA)
, (10)

where Eγ near is the transition energy in the band A which
is the closest to the Eγ(IB) in the band B, and band A
is supposed to be a reference band. From eqs. (6), (8), (9)
and the assumption that δ is almost a constant value for
the rotational band, we could find the relation between χ
and ∆i (the arithmetic average of ∆i which is equivalent
to 1

N

∑

∆i(k):

∆i ≈ 2χ (11)

if Eγ near = Eγ(IA + 2) and

∆i ≈ 2(χ− 1) (12)

if Eγ near = Eγ(IA). The rule for choosing eq. (10)

or eq. (11) to calculate ∆i is that eq. (10) is used if

2χ ∈ [−1,+1], otherwise, eq. (11) is used. Here, the in-
cremental alignments ∆i and its average values ∆i are
restricted to the region [−1,+1].
The quantized incremental alignment between pairs of

IBs in nuclei of the same type (both even mass or both
odd mass) is integer (including zero), and is half-integer
between bands in nuclei of different types [16]. In the
present work, all considered nuclei are even-even nuclei,
and thus the incremental alignment of IBs which varies
around −1.0, 0, 1.0 shows the feature of quantization [3].
But there is no demarcation line between the quantiza-
tion and non-quantization of the incremental alignment.
Because the incremental alignments vary against the tran-
sition energies Eγ and the average incremental alignment

(∆i) for a pair of IBs cannot be precisely −1.0, 0, 1.0, we
divide the region [−1,+1] into two kinds of regions as the
following: the quantized region Q,

Q =

[

−1,−
3

4

]

∪

(

−
1

4
,+
1

4

]

∪

(

3

4
, 1

]

(13)

which consists of three subregions centered at −1.0, 0, 1.0
and the unquantized region U which is around ±0.5. This
means that the Q region and the U region are treated
equally. The incremental alignment of IBs is regarded as
quantized if its ∆i lies within the Q region, otherwise it
is unquantized.

4 Results and discussions

4.1 The occurrence of IBs in SD and ND nuclei

We are primarily interested in the frequency of occur-
rence of IBs in SD nuclei. The IBs in ND nuclei are not
well defined in contrast to those in SD nuclei, but it is
better to make comparisons between SD and ND nuclei
in order to gain the insight into the phenomena. In the
present study, 13 ND nuclei in the A = 160 region (rare-
earth region), 8 SD nuclei in the A = 190 region are
included, and they all are even-even nuclei. For SD nu-
clei where the octupole correlation is taken into account,
the calculation of RASM will generate two kinds of rota-
tional bands, i.e., the bands with positive parity and the
bands with negative parity. The considered SD nuclei are
190,192,194Hg, 192,194,196,198Pb, and 198Po in the A = 190
region, and the considered normal-deformed nuclei are
166,168,170,172,174,176Yb, and 166,168,170,172,174,176,178Hf in
the rare-earth region. In this work, 10 positive-parity and
10 negative-parity low-lying bands are calculated for each
considered SD nucleus, and 20 low-lying bands are cal-
culated for each considered ND nucleus, thus we shall
have 160 SD bands and 260 ND bands for the analysis,
and these calculated rotational bands have good angular
momentum and good parity just like experimental rota-
tional bands except for the fact that parity and spins have
not been assigned for the majority of experimental SD
bands. Consequently, the possible effects on the frequency
of occurrence of IBs from deformations, rotations, intruder
high-j orbits and pairing correlations can be studied.
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Table 1. The numbers of the calculated ND IBs vary against N and δ in the A = 160 (rare-earth) region.

A δ N

(keV) 6 7 8 9 10 11 12 13

0.5 43 13 6 3 1 0 0 0
1.0 212 78 30 11 7 3 1 1

160 1.5 423 204 85 39 15 8 4 1
2.0 676 346 170 85 40 20 9 7
2.5 1006 533 275 148 79 34 16 8
3.0 1411 740 414 219 129 59 29 14

Table 2. The numbers of the calculated SD IBs vary against N and δ in the A = 190 mass region corresponding to ε3 = 0.062.

A δ N

(keV) 8 9 10 11 12 13 14 15

0.5 465 252 146 83 50 30 17 6
1.0 1650 1023 614 386 231 141 81 46

190 1.5 2580 1916 1308 828 555 345 223 137
2.0 3697 2814 2021 1369 936 639 415 276
2.5 4401 3487 2692 1965 1390 970 656 441
3.0 4982 4113 3270 2499 1864 1259 945 641

The results of the statistical analysis for IBs with the
calculated bands are given in table 1 and table 2, where
the number of IBs versus N and δ are shown. It is seen
that the number of IBs decreases with increasingN and/or
with decreasing δ for both the ND and SD nuclei. There
is a large difference between the numbers of IBs in the
SD and ND nuclei for given N and δ. For example, the
number of IBs is 85 for the ND bands and 2580 for the
SD bands in the A = 190 region atN = 8 and δ = 1.5 keV.
These statistical properties of IBs presented in the present
theoretical simulations are just what we have seen in the
experiment, at least qualitatively.
From tables 1 and 2, we can see that the frequency of

occurrence of IBs in SD nuclei is much higher than that in
ND nuclei. This may be explained by means of the inter-
play between the deformation, pairing, rotation and the
alignments of quasiparticles, which present large differ-
ences in SD and ND nuclei. ND nuclei have a smaller defor-
mation and relative low rotational frequency, the pairing is
much stronger than that for SD nuclei, therefore the align-
ments of quasiparticles occur quickly and contribute sig-
nificantly to the J (2) moment of inertia. Consequently, the
distribution of the moments of inertia should be broader
in ND nuclei than in SD nuclei (as shown in fig. 1). In con-
trast, SD nuclei possess a large deformation, the pairing
correlation is expected to be very weak and the high-N
intruder orbits have the most important influence on the
J (2) moments of inertia, and other orbits are very less
perturbed by the rotation and thus contribute less to the
J (2). Consequently, the distribution of the J (2) moments
of inertia should be narrower in SD nuclei than in ND nu-
clei. Therefore, the occurrence of IBs in SD nuclei is more
frequent than that for ND nuclei. We shall see, indeed,
that the calculated distributions of the J (2), as well as the
Eγ , show such a difference between SD and ND nuclei.
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Fig. 1. Distribution functions of the calculated J (2) (upper
part) and γ-ray energies Eγ (lower part), at spin 6 for ND
bands in the rare-earth region and spin 12 for SD bands in the
A = 190 mass region.

Once the rotational bands are calculated with the
RASM, namely E(Iπ) , the γ transition energies of each
band are then obtained to be Eγ(I

π) = E(Iπ+2)−E(Iπ)
and the dynamic moment of inertia can be calculated
to be J (2)(Iπ) = (d2

E (I
π
)/dI

2
)−1 ≈ 4/∆Eγ(I

π), where
∆Eγ(I

π) = Eγ(I
π)−Eγ(I

π − 2). The only difference be-
tween theoretical and experimental situations is that spins



Y.J. Chen et al.: Theoretical simulation for identical bands 189

Table 3. The numbers of the calculated SD IBs against N and δ in the A = 190 region corresponding to ε3 = 0.

A δ N

(keV) 8 9 10 11 12 13 14 15

0.5 324 185 120 71 40 30 19 15
1.0 1020 638 398 260 169 109 83 56

190 1.5 1785 1220 804 533 349 260 172 119
2.0 2467 1789 1273 879 582 407 290 202
2.5 3107 2288 1695 1237 891 600 417 306
3.0 3456 2740 2104 1599 1182 849 580 412

are not assigned for most of the experimental SD bands,
while the SD states generated by the RASM have good
angular momentum and parity. Therefore, the calculated
quantities in the present work are functions of spin, and
we do not need to introduce a classical term, i.e., the
rotational frequency which has been widely used in the
analysis of experimental SD bands. Figure 1 shows the
distributions of calculated J (2) moments of inertia (up-
per part) and γ-ray energies Eγ (lower part) at spin 6 for
ND nuclei in the rare-earth region and at spin 12 for SD
nuclei in the A = 190 region. The selections of spin 6 in
the ND case and spin 12 in the SD case are not specific
requirements, but warrant no occurrence of backbending
and thus a meaningful comparability. It is seen from fig. 1
that the distribution for J (2) as well as for Eγ is much
broader for ND nuclei than that for SD nuclei. This im-
plies that the probability to find similar values either of
Eγ or of J

(2), namely to obtain the IBs in superdeformed
nuclei, is larger than that in normal-deformed nuclei.
To investigate the effect of the octupole deformation on

the frequency of occurrence of IBs, we have also performed
a similar statistical analysis for SD IBs in the A = 190 re-
gion by setting the octupole deformation parameter ε3 to
be zero in the RASM calculations, i.e., the SD nuclei are
axial but of non-octupole shape in the following calcula-
tions. We still select 20 low-lying bands for each considered
nucleus, and the considered nuclei still are 190,192,194Hg,
192,194,196,198Pb, and 198Po. The results of the numbers of
IBs are shown in table 3.
By comparing tables 2 and 3, we can see that the con-

clusion that the number of IBs decreases with increasing
N and/or decreasing δ would not change if the octupole
correlation is switched off. However, the numbers of iden-
tical bands versus N and δ are different for the cases of
ε3 = 0 and ε3 = 0.062. For example, the number of IBs
is 349 for ε3 = 0 and 555 for ε3 = 0.062 in the A = 190
region at N = 12 and δ = 1.5 keV. This indicates that
under the same criterion conditions, the numbers of IBs
increase in the presence of octupole deformation. This
may be attributed to the octupole-deformation–induced
fragmentation effect on the quasiparticle alignments [17].
The octupole correlation between the high-j unique-parity
and normal-parity orbits leads to the fragmentation of
the angular-momentum alignments over many quasiparti-
cle states. Consequently, many quasiparticles have similar
alignments so that the probability of occurrence of IBs
increases.
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Fig. 2. The distributions of the average incremental align-
ments for SD IBs in the A = 190 mass region: (a) for 119 IBs
found when N = 11, δ = 0.6 keV, (b) for 746 IBs found when
N = 11, δ = 1.4 keV. The quantization regions are shaded.

4.2 The quantization behavior of the incremental
alignment of IBs

In the following discussion, we shall concentrate on the
quantization property of the incremental alignment of IBs.
We shall see that the quantization behavior of incremen-
tal alignment is very different in SD and ND nuclei, in a
manner of statistics. In the present analysis, the parame-
ter N will be restricted to 7 (11) in ND (SD) nuclei and δ
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Fig. 3. The distributions of the average incremental align-
ments for ND IBs in the rare-earth region (A = 160 mass
region): (a) for 235 IBs found when N = 7 and δ = 1.6 keV,
(b) for 40 IBs found when N = 7 and δ = 0.8 keV. The quan-
tization regions are shaded.

remains a varying parameter. The distributions of ∆i for
SD IBs in the A = 190 region and ND IBs are shown in
fig. 2 and fig. 3 respectively.

For the SD bands in the A = 190 region, there are 119
pairs of IBs found with the criterion δ = 0.6 keV and 746
pairs of IBs found with δ = 1.4 keV. In fig. 2a, there are 93
incremental alignments located in the Q region (shaded)
and 26 in U region (unshaded), the ratio NQ/NU = 3.58.
While in fig. 2b, there are 375 incremental alignments lo-
cated in the Q region and 371 in the U region, NQ/NU =
1.01. Thus, the ratio NQ/NU is strongly related to the
strictness of the criterion for IBs. For a given N , a small δ
favors the quantization of the incremental alignment. The
quantized incremental alignment between pairs of IBs in
nuclei of the same type (both even mass or both odd mass)
is integer (including zero), and is half-integer between
bands in nuclei of different types [16]. In fig. 2a, most
of the incremental alignments are located around zero.

Figure 3 shows the distributions of the average incre-
mental alignments for the calculated ND IBs in the rare-
earth region. There are 235 pairs of IBs found with the
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Fig. 4. The ratio NQ/NU varies against δ. The solid (open)
circles are for normal- (super-) deformed nuclei andN = 7 (11).

criterion of N = 7 and δ = 1.6 keV. In fig. 3a, 124 incre-
mental alignments are located in the Q region and 111 in
the U region, the ratio NQ/NU = 1.112. For a more strict
criterion δ = 0.8 keV, there are 40 pairs of IBs found and
their incremental alignments are plotted in fig. 3b. From
fig. 3b one can see that there are 21 incremental align-
ments located in the Q region and 19 in the U region,
and the ratio NQ/NU equals 1.105. The ratio NQ/NU ≈ 1
means that the number of IBs with quantized alignments
is almost equal to the number of IBs having unquantized
alignments, and this implies that the incremental align-
ments are kept unquantized in ND nuclei even with a strict
statistical criterion.

In fig. 4 the ratio NQ/NU is plotted as a function
of δ for the ND IBs (solid circles) and SD IBs (open
circles). The selecting criterion N is equal to 7 for ND
bands and to 11 for SD bands. It is seen that the ratio
for normal-deformed IBs is almost a constant near 1,
and thus presents the feature of unquantized alignments
of IBs. In contrast, for superdeformed IBs the ratio is
almost the same as that for normal-deformed IBs when
δ >1.4 keV, but the ratio increases drastically with
decreasing δ, namely, when the criterion δ becomes strict,
the incremental alignment in SD IBs presents the feature
of quantization. The result shown in fig. 4 is very close
to that shown in fig. 2 of ref. [12] where the experimental
rotational bands were analyzed in the same way. This
similarity implies that the quantization behavior of the
incremental alignments observed from the experiments is
reproduced by the present theoretical simulation. From
the point of view of statistics, we may conclude that the
incremental alignments are quantized for SD IBs but un-
quantized for ND IBs. We should mention that the result
is preliminary and the mechanism of the quantization in
SD nuclei is still an open question. We expect to get the
answer to this problem by analyzing the single-particle
structure with the RASM in another paper.
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5 Summary

In summary, the properties of IBs are investigated by an-
alyzing a large number of rotational bands produced with
the reflection asymmetric shell model. The theoretical sim-
ulations show that there exists a large excess of IBs in SD
nuclei compared to the ND nuclei, and the distribution
functions of the calculated J (2) and Eγ also support this
conclusion. Furthermore, the octupole effect on the iden-
tical bands is discussed, and the result shows that the fre-
quency of occurrence of superdeformed IBs increases when
the octupole deformation is switched on. From the present
theoretical simulations, we may conclude that more cor-
relations lead to more IBs.
The frequency of occurrence and the behaviors of IBs,

such as the quantization of incremental alignments, re-
vealed in the experiment, have been generally reproduced
by the present theoretical simulation. This would indi-
cate that the nuclear mean-field approximation plus the
beyond mean-field one, like angular-momentum and par-
ity projections, can reproduce the phenomena of IBs even
though there is no available theory that can reach the ac-
curacy of identity between the specific identical bands.
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